

The Derivative of a function(函数的导数) (p99)

1. The derivative of function $f(x)$ at x is given by (x 点的导数)

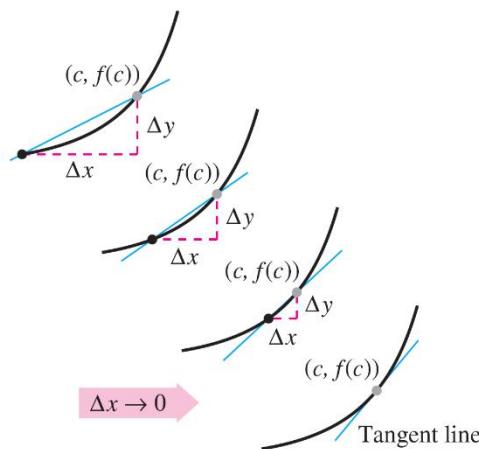
$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

2. For all x for which this limit exists,

$f'(x)$ is a function of x . (导函数)

3. Notation for derivatives

$$f'(x), \quad \frac{dy}{dx}, \quad y', \quad \frac{d}{dx}[f(x)], \quad D_x[y]$$



The function $f'(x)$ is read as "f-prime of x ".

Differential of a function(函数的微分)

The differential is defined by

$$dy = f'(x)dx$$

The notion dy/dx is read as the *derivative of y with respect to x* or dy/dx

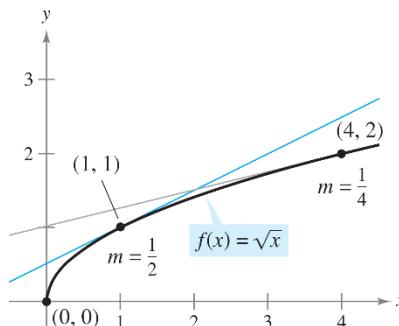
$$\frac{dy}{dx} = \lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x)$$

Example 1: Using the derivative to find the slope at a point (p100)

Find $f'(x)$ for $f(x) = \sqrt{x}$. Then find the slopes of the graph of $f(x)$ at the point $(1, 1)$

$$f'(x) = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{1}{2\sqrt{x}} \quad (x > 0)$$

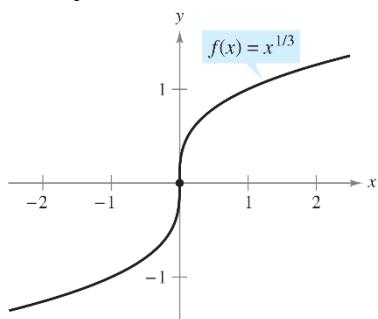
$$f'(1) = \frac{1}{2}$$



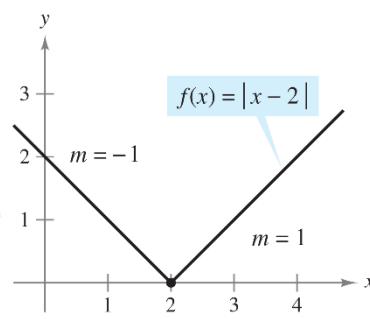
Differentiability and continuity(可导与连续) (p101)

Differentiability \Rightarrow Continuity

可导必然连续, 连续不一定可导 Although it is true that differentiability implies continuity, the converse is not true.



$$\lim_{x \rightarrow 0^-} (x^{1/3}) = \lim_{x \rightarrow 0^+} (x^{1/3})$$



$$\lim_{x \rightarrow 2^-} |x - 2| \neq \lim_{x \rightarrow 2^+} |x - 2|$$

基本微分公式

不用记也不会忘的: 3

$$\frac{d}{dx}[c] = 0 \quad \frac{d}{dx}[kx] = k \quad \frac{d}{dx}[kf(x)] = kf'(x)$$

基本函数 3

$$\frac{d}{dx}[x^n] = nx^{n-1} \quad \frac{d}{dx}[\sin x] = \cos x \quad \frac{d}{dx}[\cos x] = -\sin x$$

其他三角函数 2+2

$$\begin{aligned} \frac{d}{dx}[\tan x] &= \sec^2 x & \frac{d}{dx}[\cot x] &= -\csc^2 x \\ \frac{d}{dx}[\sec x] &= \sec x \tan x & \frac{d}{dx}[\csc x] &= -\csc x \cot x \end{aligned}$$

基本运算 3

$$\frac{d}{dx}[u \pm v] = u' \pm v' \quad \frac{d}{dx}[uv] = vu' + uv' \quad \frac{d}{dx}\left[\frac{u}{v}\right] = \frac{vu' - uv'}{v^2}$$

复合函数 2

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \quad \frac{d}{dx}[u^n] = nu^{n-1}u'$$

Exercise 1: Find the derivative by the limit process.

1.1 $f(x) = 7$

1.2 $f(x) = x^3 - 3x$

1.3 $f(x) = \frac{7}{x-1}$

1.4 $f(x) = \frac{1}{x^2}$

1.5 $f(x) = \sqrt{x+4}$

1.6 $f(x) = \frac{4}{\sqrt{x}}$

Exercise 2: (p104-35) Find an equation of the line that is tangent to the graph of $f(x)$ and parallel to the given line.

Function	Line
35. $f(x) = x^3$	$3x - y + 1 = 0$

37. $f(x) = \frac{1}{\sqrt{x}}$ $x + 2y - 6 = 0$

38. $f(x) = \frac{1}{\sqrt{x-1}}$ $x + 2y + 7 = 0$

Exercise 3: (P106-105) Let $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ and $g(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$.

Show that f is continuous, but not differentiable, at $x = 0$.

Show that g is differentiable at 0, and find $g'(0)$.

Exercise 4 : (p126-1) Use the Product Rule to differentiate the function.

1. $g(x) = (x^2 + 3)(x^2 - 4x)$

2. $f(x) = (6x + 5)(x^3 - 2)$

3. $h(t) = \sqrt{t}(1 - t^2)$

4. $g(s) = \sqrt{s}(s^2 + 8)$

5. $f(x) = x^3 \cos x$

6. $g(x) = \sqrt{x} \sin x$

Exercise 5 : (p126-7) Use the Quotient Rule to differentiate the function.

7. $f(x) = \frac{x}{x^2 + 1}$

8. $g(t) = \frac{t^2 + 4}{5t - 3}$

9. $h(x) = \frac{\sqrt{x}}{x^3 + 1}$

10. $h(s) = \frac{s}{\sqrt{s} - 1}$

11. $g(x) = \frac{\sin x}{x^2}$

Peter Muyang Ni @ BNDS

$$12. f(t) = \frac{\cos t}{t^3}$$

Exercise 6: (p126-34) Find the derivative of the algebraic function.

$$34. g(x) = x^2 \left(\frac{2}{x} - \frac{1}{x+1} \right)$$

$$35. f(x) = (2x^3 + 5x)(x - 3)(x + 2)$$

$$37. f(x) = \frac{x^2 + c^2}{x^2 - c^2}, \quad c \text{ is a constant}$$

$$38. f(x) = \frac{c^2 - x^2}{c^2 + x^2}, \quad c \text{ is a constant}$$

Exercise 7: (p126-40) Find the derivative of the trigonometric function.

$$40. f(\theta) = (\theta + 1) \cos \theta$$

$$42. f(x) = \frac{\sin x}{x^3}$$

$$44. y = x + \cot x$$

$$46. h(x) = \frac{1}{x} - 12 \sec x$$

$$48. y = \frac{\sec x}{x}$$

$$50. y = x \sin x + \cos x$$

$$52. f(x) = \sin x \cos x$$

$$54. h(\theta) = 5\theta \sec \theta + \theta \tan \theta$$

Exercise 8: (p127-73) Determine the point(s) at which the graph of the function has a horizontal tangent line.

$$73. f(x) = \frac{2x - 1}{x^2}$$

$$74. f(x) = \frac{x^2}{x^2 + 1}$$

$$75. f(x) = \frac{x^2}{x-1}$$

$$76. f(x) = \frac{x-4}{x^2-7}$$

Note

Exercise 2:

35. $y = 3x - 2, y = 3x + 2$

37. $y = \frac{-1}{2}x + \frac{3}{2}$

38. $y = \frac{-1}{2}x + 2$

Exercise 3: (P106-105) Let $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ and $g(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$.

(1) Show that f is continuous, but not differentiable, at $x = 0$.

Squeeze theorem: $-|x| \leq x \sin \frac{1}{x} \leq |x|, \lim_{x \rightarrow 0} (-|x|) = 0, \lim_{x \rightarrow 0} (|x|) = 0$,

so that $\lim_{x \rightarrow 0} \left(x \sin \frac{1}{x} \right) = 0 = f(0)$, so f is continuous at $x = 0$

$$f'(x) = \lim_{x \rightarrow 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \rightarrow 0} \frac{x \sin(1/x) - 0}{x - 0} = \lim_{x \rightarrow 0} \sin \frac{1}{x} \Rightarrow \text{limit doesn't exist.}$$

(2) Show that g is differentiable at 0, and find $g'(0)$.

Squeeze theorem: $-x^2 \leq x^2 \sin \frac{1}{x} \leq x^2, \lim_{x \rightarrow 0} (-x^2) = 0, \lim_{x \rightarrow 0} (x^2) = 0$,

so that $\lim_{x \rightarrow 0} \left(x^2 \sin \frac{1}{x} \right) = 0 = g(0)$, so g is continuous at $x = 0$

$$g'(x) = \lim_{x \rightarrow 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \rightarrow 0} \frac{x^2 \sin(1/x) - 0}{x - 0} = \lim_{x \rightarrow 0} x \sin \frac{1}{x} = 0$$

Therefore, $x = 0$ is differentiable at $x = 0, g'(0) = 0$.

Exercise 4:

1. $g'(x) = 4x^3 - 12x^2 + 6x - 12$

2. $f'(x) = 24x^3 + 15x^2 - 12$

3. $h'(t) = \frac{-5}{2}t^{3/2} + \frac{1}{2}t^{-1/2}$

4. $g'(s) = \frac{5}{2}s^{3/2} + 4s^{-1/2}$

5. $f'(x) = 3x^2 \cos x - x^3 \sin x$

6. $g'(x) = \frac{1}{2}x^{-1/2} \sin x + \sqrt{x} \cos x$

Exercise 5:

7. $f'(x) = \frac{-x^2 + 1}{(x^2 + 1)^2}$

8. $g'(x) = \frac{5t^2 - 6t - 20}{(5t - 3)^2}$

9. $h'(x) = \frac{\frac{-5}{2}x^{\frac{5}{2}} + \frac{1}{2}x^{-\frac{1}{2}}}{(x^3 + 1)^2}$

10. $h'(s) = \frac{\frac{1}{2}\sqrt{s} - 1}{(\sqrt{s} - 1)^2}$

11. $g'(x) = \frac{x \cos x - 2 \sin x}{x^3}$

12. $f'(t) = \frac{-t \sin t - 2 \cos t}{t^4}$

Exercise 6:

34. $f'(x) = 1 + \frac{1}{(x+1)^2}$

35. $f'(x) = 10x^4 - 8x^3 - 21x^2 - 10x - 30$

37. $f'(x) = \frac{-4c^2x}{(x^2 - c^2)^2}$

38. $f'(x) = \frac{-4c^2x}{(c^2 + x^2)^2}$

Exercise 7:

40. $f'(\theta) = \cos \theta - (\theta + 1) \sin \theta$

42. $f'(x) = \frac{\cos x}{x^3} - \frac{3 \sin x}{x^2}$

44. $y' = 1 - \csc^2 x$

46. $h'(x) = \frac{-1}{x^2} - 12 \sec x \tan x$

48. $y' = \frac{\sec x \tan x}{x} - \frac{\sec x}{x^2}$

50. $y' = x \cos x$

52. $f'(x) = \cos^2 x - \sin^2 x$

54. $h'(\theta) = 5 \sec \theta + 5\theta \sec \theta \tan \theta + \tan \theta + \theta \sec^2 \theta$

Exercise 8:

73. $f(x) = \frac{2x-1}{x^2}$ 非奇非偶函数, Domain: $x \neq 0$

a) $f(x) = \frac{2x-1}{x^2} = 2x^{-1} - x^{-2}$

b) $f'(x) = -\frac{2}{x^2} + \frac{2}{x} = 0 \Rightarrow x = 1$

c) $f(1) = \frac{2-1}{1} = 1 \Rightarrow \text{at } (1,1) f(x) \text{ has a horizontal tangent line.}$

74. $f(x) = \frac{x^2}{x^2+1}$ 偶函数, Domain: $x \in R$

a) $f(x) = \frac{x^2}{x^2+1} = \frac{x^2+1-1}{x^2+1} = 1 - \frac{1}{x^2+1} = 1 - (x^2+1)^{-1}$

b) $f'(x) = -(-1)(x^2+1)^{-2}(2x) = \frac{2x}{(x^2+1)^2} = 0 \Rightarrow x = 0$

c) $f(0) = 1/2$ at $(0,1/2)$ has a horizontal tangent line.

75. $f(x) = \frac{x^2}{x-1}$ 非奇非偶函数, Domain: $x \neq 1$

a) $f(x) = \frac{x^2}{x-1} = \frac{x^2-1+1}{x-1} = \frac{(x-1)(x+1)}{x-1} + \frac{1}{x-1} = (x+1) + (x-1)^{-1}$

b) $f'(x) = 1 + (-1)(x-1)^{-2} = 1 - \frac{1}{(x-1)^2} = 0 \Rightarrow x = 2 \text{ or } x = 0$

c) $f(2) = 4, f(0) = 0 \Rightarrow \text{at } (2,4), (0,0) f(x) \text{ has horizontal tangent lines.}$

76. $f(x) = \frac{x-4}{x^2-7}$ 非奇非偶函数, Domain: $x \neq \pm\sqrt{7}$

a) $f(x) = \frac{x-4}{x^2-7}$

$$b) \quad f'(x) = \frac{x^2 - 7 - (x-4)2x}{(x^2-7)^2} = \frac{x^2 - 7 - 2x^2 + 8x}{(x^2-7)^2} = \frac{-x^2 + 8x - 7}{(x^2-7)^2} = \frac{-(x-1)(x-7)}{(x^2-7)^2} = 0$$

$$c) \quad \Rightarrow x = 1 \text{ or } x = 7$$

$$d) \quad \Rightarrow f(1) = \frac{1}{2} \quad f(7) = \frac{1}{14}$$

\Rightarrow at $\left(1, \frac{1}{2}\right), \left(7, \frac{1}{14}\right)$ $f(x)$ has horizontal tangent lines.